学生妙解数学题5

前面已经有很多学生妙解的例子了(共32题),具体的见:

学生妙解数学题

学生妙解数学题2

学生妙解数学题3

学生妙解数学题4

例33  下图中,正方形的边长是4,写出A、B、C的坐标。

2013届初二傅卓尔的解答:

如图作弦图,则B到y轴的距离是[latex]2\sqrt{3}+2[/latex],B到x轴的距离是[latex]2\sqrt{3}-2[/latex],

故B点的坐标是([latex]2\sqrt{3}+2[/latex],[latex]2\sqrt{3}-2[/latex])。

例34  已知Rt△ABC中,∠ACB=90°,AC=6,BC=8。

(Ⅰ)如图①,若半径为r1的⊙O1是Rt△ABC的内切圆,求r1
(Ⅱ)如图②,若半径为r2的两个等圆⊙O1、⊙O2外切,且⊙O1与AC、AB相切,⊙O2与BC、AB相切,求r2
(Ⅲ)如图③,当n大于2的正整数时,若半径rn的n个等圆⊙O1、⊙O2、…、⊙On
依次外切,且⊙O1与AC、BC相切,⊙On与BC、AB相切,⊙O1、⊙O2、⊙O3、…、⊙On-1均与AB边相切,求rn.

 

2012届初三周洁的解答:

如图,在图1中可以算出O1D=2,AD=4,DB=6,所以[latex]\frac{O_1D}{AD}=\frac{1}{2}[/latex],[latex]\frac{O_1D}{DB}=\frac{1}{3}[/latex],于是可以在图2、图3中可以证明所有黄色的三角形相似,所有绿色的三角形相似,那么设[latex]O_1D=r[/latex],在图1中就有AD=2r,DE=2r,EB=3r.  2r+2r+3r=10,[latex]r=\frac{10}{7}[/latex]。

同理,在如3中AD=2r,DE=2(n-1)r,EB=3r.  2r+2(n-1)r+3r=10,[latex]r=\frac{10}{2n+3}[/latex]。

例35  有一种足球是由32块黑白相间的牛皮缝制而成的(如图甲),黑皮可看做正五边形,白皮可看做正六边形,求出白皮、黑皮各多少块?

小学2012届六年级袁祎铭解答:

如图乙,将每一个六边形与3个[latex]\frac{1}{5}[/latex]的五边形组合在一起,这就说明1个六边形对应着[latex]\frac{3}{5}[/latex]个五边形,故六边形的个数与五边形的个数之比是5:3,所以白皮块数=32÷(3+5)×5=20,黑皮块数=32÷(3+5)×3=12.

例36  已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0),(x1,0),且1<x1<2,与y轴的正半轴的交点在点(0,2)的下方,则下列结论①a<b<0;②2a+c>0;③4a+c<0;④2a-b+1>0中正确的是____________。(写出序号)

1012届初三洪骋娴解答:

①显然a<0,b<0,由图可知对称轴在[latex]-\frac{1}{2}[/latex]的右边,故[latex]-\frac{b}{2a}>-\frac{1}{2}[/latex],解之a<b;

②将(-2,0)代入解析式得4a-2b+c=0,4a+c=2b>2a,故2a+c>0;

③将(-2,0)代入解析式得4a-2b+c=0,4a+c=2b<0;

④将(-2,0)代入解析式得4a-2b+c=0,2a-b=[latex]-\frac{1}{2}[/latex]c,

∵0<c<2,∴2a-b=[latex]-\frac{1}{2}[/latex]c>-1,即2a-b+1>0.

例37  如图,正方形ABCD的边长为8cm,分别以AB、AD为直径画半圆,求图中两个紫色部分面积的差的绝对值。

老师的解法:

设小的紫色部分为S1,大的紫色部分为S2.

设想将两张半圆纸片放于桌上,这是白色部分一层纸,S1有2层纸,S2有0层纸。再揭掉正方形部分纸片,这样白色部分0层纸,S1有1层纸,S2有-1层纸,即为S1-S2.

∴│S1-S2│=│2S半圆-S正方形│=64-16π.

2013届初二毛向宇解答:

两个紫色部分面积的差的绝对值,即为第二个图中的紫色部分面积。

例38  如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE等于_____。

常规的解法:

如图1,旋转△ABE至△BCF,将四边形ABCD转化为正方形BEDF.

13届初二8班周喆旻的解法:

如图2,作CG⊥BE于G,可得两个灰色的三角形全等,设AE=BG=y,BE=CG=ED=x,则x(x-y)+xy=8,解得[latex]x=2\sqrt{2}[/latex].

2013届初二史梦倩解答:

如图3,作CG⊥BE于G,连EC,则两个灰色的三角形全等,两个黄色的三角形全等,

于是△BEC的面积为四边形ABCD面积的一半,即BE×CG÷2=8÷2,BE2=8,[latex]x=2\sqrt{2}[/latex].

例39  如图,O为□ABCD的对角线交点,E为AB的中点,DE交AC于点 F,  若SABCD=24,则S△DOE的值为多少。

老师解法:∵四边形ABCD是平行四边形,∴O是BD的中点,

又∵E为AB的中点,∴OE∥AD,∴S△DEO=S△AEO=[latex]\frac{1}{8}[/latex]SABCD=3.

2013届初二8班孙一如解答:

∵四边形ABCD是平行四边形,∴O是BD的中点,

又∵E为AB的中点,∴S△DEB=[latex]\frac{1}{2}[/latex]S△ABD

S△DOB=[latex]\frac{1}{2}[/latex]S△DEB,∴S△DB=[latex]\frac{1}{4}[/latex]S△ABD=3.

例40  如图所示,在6×6 的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的多边形称为格点多边形,如图①中的三角形是格点三角形.

请你在图①中画一条直线将格点三角形分割成两部分,将这两部分重新拼成两种格点平行四边形(非矩形),画在图②,图③,中。

老师的解法:

 

2013届初二8班周喆旻提出歧义:

这不符合“画一条直线将格点三角形分割成两部分,将这两部分重新拼成两种格点平行四边形”,这两种拼法分割线不一样了,应该是同一条分割线,拼成两种不同的平行四边形。

2013届初二张朝欣解答:

例41  如图,正方形ABCD中,M是AB上一点,E是AB延长线上一点,MN⊥DM交∠CBE的角平分线于N,求证:MD=MN.

老师的方法:

在AD上取一点G使AG=AM,再证△DGM≌△MBN。

2013届8班陶心的解法:

如图作NF⊥AB于F,设AM=a,BM=b,BF=NF=c,

由△DAM∽△MFN,得[latex]\frac{a+b}{b+c}=\frac{a}{c}[/latex]

可求出a=c,∴△DAM≌△MFN,故MD=MN.

例42  如图△ABC中,点D、E分别在BC、AC上,BE⊥AC,BD=DC,∠DAC=30°,求证:AD=BE。

 

老师的证法:

作EC的中点L,连结DL,由Rt△中30°的性质知AD=2DL,又由中位线性质知BE=2DL,故AD=BE.

2013届初三沈超群的解法:

延长AD至F,使DF=AD,由∠DAC=∠F=30°及BE⊥AC、BF⊥BE知AK=2KE,KF=2BK,故AF=2BE,又AF=2AD,所以AD=BE。

例43  若二次函数y = ax2 + bx + c(a ≠0)的图象过点(0,1)和(–1,0)且顶点在第一象限,则S = a + b + c的值的变化范围是 (    )

A、0<S <1          B、0 <S <2          C、1 <S <2          D、–1< S< 2

2013届初三郑晨扬的解法:

S = a + b + c是x=1时函数的值,从下图可以看出,S的值介于0与2之间,所以选B.

发表评论

邮箱地址不会被公开。